An Unsupervised Speaker Adaptation Method for Lecture-Style Spontaneous Speech Recognition Using Multiple Recognition Systems
نویسندگان
چکیده
This paper describes an accurate unsupervised speaker adaptation method for lecture style spontaneous speech recognition using multiple LVCSR systems. In an unsupervised speaker adaptation framework, the improvement of recognition performance by adapting acoustic models remarkably depends on the accuracy of labels such as phonemes and syllables. Therefore, extraction of the adaptation data guided by confidence measure is effective for unsupervised adaptation. In this paper, we looked for the high confidence portions based on the agreement between two LVCSR systems, adapted acoustic models using the portions attached with high accurate labels, and then improved the recognition accuracy. We applied our method to the Corpus of Spontaneous Japanese (CSJ) and the method improved the recognition rate by about 2.1% in comparison with a traditional method. key words: spontaneous speech recognition, unsupervised speaker adaptation, confidence measure, multiple LVCSR models
منابع مشابه
Unsupervised speaker adaptation using high confidence portion recognition results by multiple recognition systems
This paper describes an accurate unsupervised speaker adaptation method for lecture speech recognition using multiple LVCSRs. In an unsupervised speaker adaptation framework, the improvement of recognition performance by adapting acoustic models greatly depends on the accuracy of labels such as phonemes and syllables. Therefore, extraction of the adaptation data guided by the confidence measure...
متن کاملUnsupervised Language Model Adaptation for Lecture Speech Recognition
This paper addresses speaker adaptation of language model in large vocabulary spontaneous speech recognition. In spontaneous speech, the expression and pronunciation of words vary a lot depending on the speaker and topic. Therefore, we present unsupervised methods of language model adaptation to a specific speaker by (1) making direct use of the initial recognition result for generating an enha...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملImprovement of Lecture Speech Recognition by Using Unsupervised Adaptation
The aim of this work is to improve the recognition performance of spontaneous speech. In order to achieve the purpose, the authors of this chapter propose new approaches of unsupervised adaptation for spontaneous speech and evaluate the methods by using diagonal-covariance and full-covariance hidden Markov models. In the adaptation procedure, both methods of language model (LM) adaptation and a...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 88-D شماره
صفحات -
تاریخ انتشار 2005